INTRODUCTION

Macrophotography

Macrophotography refers to the use of photographic equipment to create larger-than-life-sized images of relatively small subjects. A few years ago, a photographer needed expensive lenses and bulky cameras to accomplish macrophotography. Thanks to modern digital cameras and camera phones, digital macrophotography is now accessible to many Kentuckians. This resource guide encourages 4-Hers to use consumer-grade macrophotography equipment to study Kentucky insects and their biology.

Almost anything can be the subject of macrophotography, but some of the most popular subjects are small animals, especially insects, which are important in Kentucky agriculture. For this series of projects, 4-Hers will use a variety of macrophotography techniques to study different aspects of entomology. These are five separate projects that may be completed at the rate of one per year, culminating with a County Fair submission at the end of each year. In addition to each “final project” that may be submitted for County Fair competitions, each year’s project will also include a selection of optional assignments that will help 4-Hers learn advanced macrophotography techniques and scientific concepts as they prepare to submit their project.

First Year: DIVERSITY (Lot 6026, Class 687B)

4-Hers will use macrophotography to study the diversity of insect life in Kentucky by creating a digital collection of 25-50 insects. Each insect will be identified to Scientific Order and Common Name. This document will focus on the first-year project, but will contain information that will be useful for units 2-5.

Second Year: LIFE CYCLES and ADAPTATIONS (Lot 6026, 688B)

This is a two-part project. First, 4-Hers will use macrophotography to study life cycles of Kentucky insects. 4-Hers will photograph and identify various insect life stages, including two examples each of insect eggs, insect nymphs, insect larvae, and insect pupae. Then, 4-Hers will use macrophotography to capture the behaviors and adaptations of 20-30 insects. This project will include “action” shots of insects as they exhibit behaviors and use adaptations. Each behavior and/or adaptation will be identified.

Third Year: INTERACTIONS WITH HUMANS

4-Hers will use macrophotography to create a digital album of 50 Kentucky insects, all of which are captured in the act of interacting with the human world. Examples may include pests (like invasive species and insects that infest homes), and beneficial examples (like pollinators and predatory insects). Each insect will be identified, and notations will also include comments about the impact that the subject has on the human world.

Fourth Year: PLANT-INSECT INTERACTIONS

4-Hers will document 50 different interactions between insects and plants. Interactions may include pollination, herbivory, seed-dispersal, and other examples. For each photograph, the 4-Her will write a small description of the interaction, including the name of each insect and plant and will give evidence to support their identification of a particular interaction.
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

Fifth Year: ADVANCED STUDIES
Fifth-year 4-Hers will use digital macrophotography to study entomology in a creative or investigative way. Projects may advance the first four years of the project in some way, or 4-Hers can use macrophotography to study some other aspect of entomology. Arachnids and other non-insect arthropods may be the primary subjects of this unit. Photographs captured by the 4-Her in other states and countries may be the focus of this project. Other media may also be incorporated. The project must consist of at least 50 images.

Examples may include, but are not limited to:
- Long term photographic investigations of the plant-insect interactions in a certain area
- A photojournalistic piece, with a written component
- A video documentary that incorporates macrophotography
- A prepared slideshow with images and text

Record Keeping
As students advance through this curriculum, it is crucial that they document the photographic equipment and techniques that they use for each photograph. Not only will this help to eliminate the possibility of plagiarism, it will also encourage 4-Hers to keep track of the tools and techniques that worked the best in different situations. Records will include: type of camera used; type of lens used; macrophotography techniques used; date, and location of the original photography. These records should be kept in a notebook and will be included with each photograph that is submitted to County and St. Fair judging.

Digital Submissions
Because judges will be viewing dozens of submissions in a limited amount of time, and because submissions may be displayed publicly as a slide-show during County or St. Fair, it is important that all entries follow the submission guidelines. For County and St. Fair, projects for this curriculum will be submitted as USB storage devices (“thumb drives”, for instance) that contain individual digital photographs. Photographs will be named and organized into folders as specified in the rules for each project-year. Photographs will be in JPG format and folders will be in Windows/PC format. Notations containing basic information will be inserted directly into each image. All submitted photos must be exactly 1920x1080 pixels, but vertical or horizontal black borders may be used to accommodate images that have different proportions.

Content Rights and Plagiarism
The rights to the photographs will remain with the 4-Her but Kentucky 4-H may display entries on digital displays during fairs or use photos on the web as submission-examples for this project. Submissions must be original photographs created by 4-Hers. If photos don’t appear to match the notation data (e.g., if the image seems to have been captured at a different location or with a different camera or lens than what is notated) or if the photos match images created by other photographers, judges reserve the right to disqualify the project.
MACROPHOTOGRAPHY BASICS

Insect macrophotography is just a small part of the overall subject of macrophotography, which is in turn just a small component of the whole world of photography. These are all big topics, and this document cannot contain all of the information needed to become an expert in any of them. Instead, it includes basic information and tips that will allow 4-Hers to capture good images with inexpensive and readily obtainable equipment.

Other Resources

For more detailed instructional advice regarding photography in general, see the official 4-H Photography curriculum.

4-H National Curriculum: Photography
http://4-h.org/parents/curriculum/photography/

Equipment

Many kinds of systems are available for digital macrophotography, and no one system is right for every situation. If a 4-Her already has a digital-camera system that works for them, they are encouraged to use it for these projects. For beginners, here are a few options to consider:

1. **Smartphone + External Macro Lens**
 Many modern smartphones have good built-in cameras, and are an excellent choice for beginning photographers. They are convenient, small, and are able to take detailed, high resolution images. Most importantly, many 4-Hers will already have a smartphone. For macrophotography, an external macro lens is usually needed. Fortunately, these are inexpensive (many are less than $20) and easy to use. Clip-on and strap on models are available, and many of them are compatible with multiple types of phones. Models and brands change frequently, so use internet searches to find a highly-rated model that is compatible with your phone. One of the downsides of using a phone as a primary camera is that it can sometimes be difficult to transfer photos from a phone’s onboard memory onto a computer. If a 4-Her is using a phone for this project, it is important for them to learn how to access image files on the phone, or how to save images directly to an internet “cloud” service that can be accessed by computer. Also, compared to some other systems, a phone with an external macro lens will have limited options when it comes to certain technical capabilities, including focusing, depth-of-field, and the use of a tripod or a flash. Most of these problems can be overcome, however, and we will discuss them in more detail in later sections.

 This link from April 2017 discusses several models of external lenses for smart phones:

2. **Compact Digital Camera**
 Most modern consumer-grade compact digital cameras have built-in macro settings (often indicated by a “flower” [†] symbol). These settings are usually more than adequate for macrophotography beginners. Compact digital cameras are also relatively inexpensive (around $200 for good models). Compared to a smartphone with strap- or clip-on macro lens, there is little advantage to having a compact digital camera for macrophotography in terms of image quality. However—because they are ergonomically designed and have dedicated photography components—compact digital cameras can be a little bit easier and faster to use. Compared to
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

Cell phone cameras, they may also have flashes that work better for macrophotography, and focusing is sometimes easier with a compact digital camera. The removable memory cards that compact digital cameras use may also be more convenient for some users than the storage solutions used by cell phones.

3. **Digital Single Lens Reflex (SLR) Camera**

SLR cameras tend to be larger and more expensive than compact digital cameras, but they offer greater flexibility. SLR cameras have interchangeable lenses; for this project, a separate macro lens would need to be purchased. SLR cameras do not always have built-in flashes, but separate flashes can be purchased that may work better for macrophotography than the flashes that are built into cell phones and compact digital cameras. The purchase and use of SLR cameras can be a very rewarding hobby, but it can also be complex and costly. This document cannot touch on all of the details that a 4-Her would need to get started with SLR cameras, and for that reason we suggest that beginners should create this project using one of the options mentioned above. If a 4-Her is already familiar with SLR cameras, though, they should be encouraged to use them for this project.

INSECT MACROPHOTOGRAPHY: GUIDELINES, TIPS, AND TECHNIQUES

What Are the Expectations for a First-Year County or St. Fair Submission in Insect Macrophotography?

1. **Focus on diversity.** The theme of the first-year 4-H insect macrophotography project is “Diversity,” which refers to the diversity of insect orders and species that live in Kentucky. This project must include images that represent at least four correctly-identified insect orders. However, the inclusion of more than four orders will earn even more points (see the sample judging sheet at the end of this document for more information). In fact, the inclusion of extra orders (correctly identified) is the easiest way to add points to your project. A 4-Her may also include “common names” for the insects. These names are optional for the first-year project, but correct common names will earn additional points. First-year projects must include images of at least 25 insects, but may include up to 50 (additional points will be awarded if the 4-Her submits more than 25 acceptable images, but not more than 50).

2. **One species, one image.** Each species that is correctly identified to order (up to 50) will receive points on the evaluation. Because of the emphasis on insect diversity, submitted projects should generally not include more than one image of same species. The one exception is for species that have multiple, distinct forms. For instance, male and female stag beetles look very different, so if a 4-Her submits images of both a male and female stag beetle, both images will be considered by the judging team if the 4-Her indicates “Stag Beetle, male” and “Stag Beetle, female” in the “common name” field of the image’s notation box. Another example would be the Eastern Tiger Swallowtail, which has distinct “dark” and “light” forms; if these are properly indicated on the “common name” field on the image, both images would be considered by the judging team.

3. **Adult insects and arthropods only (UPDATED 2019).** For the first-year project, 4-Hers should submit images of adult insects (and adult non-insect arthropods like spiders, crayfish, etc.). No images of insect larvae, nymphs, eggs, or pupa will be judged. Later units will include some of those other life-stages. An insect is defined as any invertebrate (that is, any creature without an internal skeleton) with six jointed legs in the adult stage. Sometimes it may be difficult to determine if an insect in an image is an adult or not. With few exceptions, an adult insect will
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

not be worm- or caterpillar-like. Also, most adult insects have wings (exceptions include some
adult ants, adult aphids, adult fleas, and a few other creatures). Insects should be identified to
“Order” while non-insect arthropods should be identified to “Class.” (For judging purposes, a
non-insect arthropod Class is worth the same as an insect Order.)

4. Correct identification. As mentioned above, the insects in this project must be correctly
identified to the proper scientific insect order. Insect common names (which are optional for the
first-year project, but are important for earning points in County and St. Fair competitions) are
also an aspect of identification. In fact, one of the goals of this project is for 4-Hers to familiarize
themselves with insect orders. Learning the basics about insect orders—how to tell an ant
(Order Hymenoptera) from a termite (Order Isoptera), for instance—is both an agricultural skill
and a basic life skill, with applications in farming, gardening, home ownership, and even safety.
Although there are about 15,000 species of insects in Kentucky, all of these insects belong to
two 24 orders. Most 4-Hers find that, with a little practice, identification to the order level is not
very difficult. Common names are a little more challenging, but once you know the insect order
name, the common name can be found more easily.

This document does not include detailed information about insect identification, but here are
some useful resources:

a. Kentucky 4-H Entomology: Key to Common Insect Orders. This document is designed to
work with all of the various Kentucky 4-H Entomology projects, and was written specifically
for the insects found in Kentucky. It contains basic descriptions of each insect order, along
with pictures. (It also includes a scientific key to insect orders, but keys do not work well
with photographs.) This document will also help you determine whether or not a creature is
an insect, and whether or not it is an adult. Also included are the non-insect arthropod
classes. This document is free and can be printed at the local County Extension office, or it
can be viewed and downloaded here:
https://entomology.ca.uky.edu/files/deptimages/stfairorder.pdf

b. Kentucky Critter Files. The Kentucky Critter Files is a website specifically designed for quick
identification of common Kentucky insects by 4-Hers and other students. It is organized by
scientific class and order, and includes many common names as well. It does not include
every insect found in Kentucky, but it is a good place to start.
http://www.uky.edu/Ag/CritterFiles/casefile/insects/insectfile.htm

c. Bugguide.net. Bugguide is a very popular website that is maintained by entomologists and
photographers from all over the United States. It is likely to contain properly-identified
images (including order names and common names) of every insect that a 4-Her will find in
Kentucky. It contains thousands of images though—including images of creatures that do
not live in Kentucky—so finding what you are looking for can be challenging.
http://bugguide.net/node/view/15740

Where Can 4-Hers Find Insects to Photograph?
There are more species of insects than all other plants and animals combined, and insects can be found
in almost every ecosystem in the world. And yet, sometimes they can be difficult to find. Many species
are small, secretive, and camouflaged. Here are some tips for finding insects for the 4-H
macrophotography project.

1. Spring, Summer, and Fall. Some insects are active all year in Kentucky, but most types are
easiest to find on warm, sunny days from late Spring to early Fall. Plan accordingly: if a 4-Her
wants to complete an insect macrophotography collection in June, for example, they should
consider starting in June the year before, so that there will be a full season to search for
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

Insects can still be found in Winter, though. Kentucky winters are mild. Even though insects aren’t moving around in the open very often during cold weather, they are often close at hand under leaves and inside decaying logs. Aquatic insects are also a possibility: although aquatic photography can be a challenge, aquatic insects are active all year round.

2. **More plants = more insects.** Scientists know that insect diversity is related to plant diversity: the more kinds of plants and trees live in an area, the more kinds of insects will live there. Kentucky forests have tremendous plant diversity and are great places to look for insects. Gardens also tend to have lots of different kinds of plants and flowers, which attract many insect species (both pests and beneficial species).

3. **Insects love sunshine.** Because insects are cold blooded, they often thrive in warm, sunny places. Waist-high grasses, weeds, flowers, and garden plants that receive lots of sunshine are often swarming with insects. Sunshine is also helpful for macrophotography.

4. **Insects love edges.** In biology, an “edge” is a place where two ecosystems meet. Edges often have very high plant diversity. An example of an edge would be a place where a field crop (like corn) is planted next to a forest. Such an area would have all of the plant diversity of a crop (including weeds and the crop itself) and a forest. Forest edges also tend to receive more sunlight than forest interiors, which increases both plant and insect diversity. Other “edges” include: a garden next to a wooded stream; a farm next to a lake or pond; a meadow next to a wetland.

5. **Warm days, cool mornings.** On cool mornings in late Spring and early Fall, insects can sometimes be found resting on flowers and leaves as they wait for the sun to warm them up. This is often a great time to take a picture.

How Can A 4-Her Get Close Enough to an Insect for a Photograph?
Insects—especially the ones that are good fliers—are often very alert and very fast. When a person approaches them with a camera, they will often take flight or even drop straight to the ground before the photographer can get close enough. Here are some tips to help you get a little closer.

1. **Patience.** Often, a photographer will not be able to get close enough before an insect flies or scurries away. Keep trying. There are lots more insects, and they all have to rest sometime. Often, if you see one insect in an area, there will be more of the same type around, so there will be more opportunities to capture an image. One strategy is to sit close to a flower or other spot that an insect might visit and wait for one to land there.

2. **Approach slowly.** Insects are likely to flee if something approaches them quickly, so a photographer should approach with stealth.

3. **Manage your shadow.** Insects often react when something approaches them quickly, so a photographer can note the sun’s angle and keep their shadow off of the insect as they approach.

How Does a 4-Her Format an Image For Submission?

1. **Use image-editing software to prepare images.** All images submitted for this project will require at least some digital editing (especially for the inclusion of notation box, as discussed below) to meet basic requirements. Most home computers and laptops will have basic image-editing programs built in, and these programs will have the basic tools needed to prepare an image for submission. A “select” tool for instance, will allow a 4-Her to select and “cut out” a 400x225 pixel white space for the notation box. A “text” tool will allow a 4-Her to select a font and a font-size to write notations within the box. A “crop” tool allows the user to shave the edges of an image to meet the 1920x1080 pixel size requirement. A “resize image” tool will allow a 4-Her to enlarge or reduce images. More powerful tools may be found on advanced
image-editing software; many computers at County Extension offices will have this software. These programs are easy to use with a little practice.

2. **All submitted images must be 1920x1080 pixels.** It is acceptable to crop, reduce, or enlarge images to match these dimensions, but be aware that too much enlarging will lead to blurry or pixilated images. It is also acceptable to submit images that are “letterboxed” with black borders either vertically or horizontally (but not both). The reason that all photos must be the same size is to facilitate judging.

3. **All images must be in .jpg format.** If a 4-Her’s camera takes photos in another format, they must be converted to .jpg. This can be accomplished easily with most photo-editing software.

4. **All image files must be named using the same format.** Each image will have a filename that matches the following: “lastname-county-#.jpg,” where “#” indicates the number of the image inside the digital folder. Example filename: Doe-Fayette-1.jpg

5. **Image files must be submitted on a single USB storage-device.** Images will be submitted on a USB memory device (such as a “thumb drive”) that is formatted for PC/Windows devices with no other data except for the images and a single folder. The USB device must be identified externally with a tag or label, showing “4-Her’s last name-County-Lot Number-Class Number,” with spaces between the fields if necessary. The single root folder will be labeled with the same information. Images will be contained inside this folder. Example folder name: Newton-Fayette-Lot6026-Class687B

 ![Example of a USB thumb drive submitted for this project. Identification tag taped directly to the body of the device showing 4-Hers last name, County Name, Lot Number, and Class Number](image-url)
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky First Year: Diversity (Lot 6026, Class 687B)

Example of a folder name for this project. This folder is contained inside a USB storage device and is the only folder on the device.

Example of a list of files submitted for this project. These files will be contained in a single folder on a USB storage device, and will be the only files on the device.

6. All images must be created and edited by the 4-Her. It is not acceptable to submit images from other photographers, including relatives, friends, or images obtained from the internet. All
cropping, editing, and other digital manipulation must be also performed by the 4-Her, although help from adults and peers during this process is encouraged.

7. **All images must include a formatted “notation box” in the image.** Each image must include a 400X225 pixel, white notation box with important information about the photo. The 4-Her will use photo-editing software to place this notation field anywhere inside the image, including inside black bars (if present). Fonts may vary based on the 4-Her’s software, but we recommend Arial, 18pt, black, non-bold, or any easy-to-read font that fits inside the notation box (for instance if Arial 18pt does not fit inside the notation box, a smaller font-size may be used). The notation field will include the following information, with one space between each line:

 [4-Her’s Name, County, Lot Number, Class Number, Entry Number]

 [Date of original photograph]/[Location of original photograph. Location may be in the form of a street/city/zip code address or GPS coordinates.]

 [Brand and type of camera or camera phone]

 [Settings, including type of lens, relevant camera settings, and “flash” or “no flash,” any digital enhancements]

 [Insect Order or Arthropod Class – Common Name]

Examples of Acceptable Submissions

Example of a submitted image. 1920 pixels wide, 1080 pixels tall. An acceptable file name is “newton-fayette-1.jpg.”

Close up of the 400x225 notation field. All photos must include a similar notation field. The font used here is Arial, 18pt, non-bold, but a slightly smaller font may be used if 18pt does not fit.
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

Example of a submitted image with black horizontal “letterbox” bars above and below the main image. These bars are useful when submitting photos that fall outside of the 1920x1080 submission size.

Shown here is a non-insect arthropod, so the Class name “Arachnida” is used in the place where the insect order name would have been listed. This image was narrow, so black “letterbox” bars were used to fill in the space on the left and right to maintain the standard size of 1920 pixels wide, 1080 pixels tall.
How Can a 4-Her Take Better Photographs of Insects For This Project?

Just like all skills, macrophotography takes practice. Macrophotography is even more challenging when the subject is an insect; insects are unpredictable and can move out-of-frame at any time. Here are some tips and techniques that will help 4-Hers as they learn, and that will help them to achieve a higher score when the project is submitted for judging.

1. **Take lots of pictures.** Thanks to digital cameras and large-capacity memory cards, a photographer can take hundreds of pictures without running out of space. When a 4-Her sees an insect that they would like to photograph, they should take more than one picture, especially in challenging conditions, such as low light or tricky backgrounds. It might also be a good idea to capture images of the same insect from different angles and from different distances. This way, a 4-Her will have a choice of images for the final project.

2. **The insect should be the subject.** Remember that this project is about entomology first, photography second. The insect should be the subject—in other words, the most important part—of each photograph. That doesn't mean that the insect needs to always be in the exact center of the image, or that all of its parts need to be in perfect focus, or that it needs to take up the most space, but it should be the most important part of the image.

In this image, a bee fly is shown visiting a flower. But the fly is out of focus and only takes up a small portion of the image, while the flowers are in focus and dominate the image.
3. **It must be possible to identify the insect.** 4-Hers must use images that show enough of the insect so that it is possible for judges to identify it to Order and Common Name. On the evaluation sheet, this is referred to as “diagnostic quality”. Diagnostic Quality can be improved by capturing as much of the insect’s body as possible (it is acceptable though, for parts of the body to be out of the frame, such as tips of legs or antennae). Also, most images should either be “overhead,” showing the insect’s back, or “three-quarter,” which would show parts of the insect’s back along with the head (other angles might work as well). For butterflies, avoid images that show the undersides of the wings rather than the tops of the wings. If a judge cannot identify the insect because of the quality of the image, it will not count toward the total score.
4. **Watch out for over- and underexposure.** When taking pictures of insects, it is easy to over- or underexpose an image. Overexposure means that there is too much light on the subject. Underexposure means that there is not enough light. With insect macrophotography, overexposure is generally less of a problem than underexposure, but there are ways to avoid both problems. **Overexposure** occurs very commonly in macrophotography when using flashes that are “built-in” with phone cameras and compact digital cameras. This is because the flashes are often not designed to work “close up.” Instead, if a 4-Her needs extra light to photograph an insect, it is sometimes best to use a portable light that can be positioned wherever it is needed. These are sold in photography stores—it is important to use a model that emits light that mimics natural sunlight. Overexposure can also occur in very bright direct sunlight. In general though, **underexposure** is a more common problem in insect macrophotography than overexposure. This is for two reasons. For one, insects are often found resting in shady places. Also, it is difficult to keep an image from becoming blurry at low light levels. A portable light can help with this. It is also very important for a photographer to stay very still when taking images at low light levels, and also to take several images from the same angle in case some of the image are blurry. In some cases, effects may be applied in digital editing software to help with over- and underexposure, but it is always best to capture a sharp, properly-exposed image in the first place.
Underexposed: Because of low-light conditions, the insect is indistinct from the background. The image is also blurry because the camera was moving while taking the image.
Overexposed: Because of low-light issues, a flash was used. But because built-in flashes are typically not optimized for close-up photography, there is too much light in the image. The light turns parts of the insect and the background into solid colors—all detail is lost.
Proper Exposure: The same insect was photographed in a better situation with lots of natural light, so that a flash was not needed.

5. **Manage the background.** Sometimes, a background can help to highlight and frame an insect subject. Sometimes it can distract from or obscure the subject. When a 4-Her is getting into position to take an image, they should take a moment to notice the background. Will it overpower the image, either with brightness or with a complex pattern? Would it be a good idea to take a picture from a multiple angles to try different backgrounds? In some cases, a 4-Her can insert a custom background behind the subject by placing a piece of colored construction paper (a large leaf will often work as well) in the area behind the insect that is just out-of-focus. Often, a background that is out-of-focus and simple in color and design can help to highlight a subject.
Overpowering Background: This dragonfly image has some good qualities: the insect dominates the image, it is in focus, the exposure is good, and it is possible to identify the insect. But the background is a mix of colors, textures, light, and shadow. The insect would be more distinct on a simpler background, or even if the current background were out-of-focus.

Managed Background: The dragonfly image also features a complex background, but because the background is out-of-focus, the dragonfly is more distinct and makes a better subject.

6. Challenges with focus. It is important for the insect in a photo (or at least parts of it) to be in focus. With macrophotography—and especially with cell-phone based macrophotography—there are some unique challenges related to focus. When a photographer gets very close to a small object (like an insect) with a macro lens, it is very difficult to get the whole subject in focus. There are several ways to deal with this; two are highlighted below.

a. Shallow focus. In macrophotography, it can be helpful to limit the focused area to just the most important parts of the subject. For insects, this is usually the back and the head
(especially the front of the head, or the “face”). Since it is difficult or impossible to adjust the focus on a cell-phone (depending on the type of add-on macro lens), the way to adjust focus is to move back and forth and check for proper focus on the screen, then capture the picture when proper focus is achieved. A photographer will often need to take several pictures of the same subject in this manner, and then choose the best when looking through the images later. Getting just the most important parts of a subject in focus has some advantages, including a higher level of detail and (often) a more aesthetically pleasing image. The disadvantage is that it is often difficult to get close enough to an insect to get this type of image before the insect leaves or moves into a new position. Also, when a photographer gets closer to the subject, low light levels tend to have a greater potential to create blur.

Shallow Focus: In this image, the back and the head of the mosquito are in sharp focus, while the legs and the leaf are just out of focus and the background behind the leaf is wholly out of focus. Bright sunlight contributed to a strong overall image.

Deep focus. If a photographer has difficulty with the above method, they can try standing a little further away from the subject. This may allow a 4-Her to get more of the insect in focus even in conditions where light levels are not optimal. Then, when editing the image on a computer, the 4-Her can zoom and crop the image to highlight the insect. The disadvantage of this method is that, while the whole image may will be in focus, no part of the image will look particularly sharp. Also, zooming and cropping can will lead to an image that has relatively low resolution, and may appear blurry or pixelated. Often, it is best to take multiple images using both this method and the method above and then select the best image later.
Deeper Focus: This image was taken relatively far away from the subject. Most of the beetle is in focus, rather than just the head and the back, but because of zooming and cropping, no part of the image is particularly sharp.
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

TASKS
These Next-Generation Science Standard (NGSS) aligned tasks can be used by a 4-Her to gather a body of work for a first-year insect macrophotography project. Even though these tasks will have specific goals, 4-Hers should keep the submission guidelines in mind while they are creating images. These tasks are optional and will not be included as a part of your County or St. Fair submission, but are designed to provide ideas for places to take pictures of insects and may provide insight on insect identification and biology.

Task #1: Using photographs as evidence, construct an argument that insects have external structures that function to support survival, growth, behavior, and reproduction.

NGSS Performance Expectation: 4-LS1-1

Instructions: Using the macrophotography techniques that you have learned, create photographs that will help you make each of the following arguments:

Photo Set 1 – “Moving Parts” of Five Different Insects. Insects have structures that allow them to get from one place to another. Points to consider: Why is it important for most insects to move frequently from one place to another? What structures shown in your photos help with movement? Can an insect have more than one structure—or more than one kind of structure—that helps with movement?

Photo Set 2 – Tools of the Trade for Five Different Predatory Insects. Predatory insects have structures that help them to capture and eat insects and other prey. Points to consider: Which structures in your photos might help catch prey? What are some common patterns that you see between different structures that are used to catch prey?

Photo Set 3 – Defensive Structures of Five Different Insects. Many insects have structures that help them to defend themselves against predators. What structures in your photos help to defend the insects? How do they help defend the insects?

Follow up questions and tasks:
- Do any of the insects in the photos have a structure that could be used for more than one function, such as a structure that can function for both prey-capture and defense? How about a structure that can function for both defense and movement?
- Did you actually observe any of the insects that you photographed using their structures for movement, prey-capture, or defense?

Repeat the same task—gathering photos to show structures that function for movement, prey-capture, and defense—except with animals that aren’t insects. Birds, spiders, or mammals might be good places to start. While you do this, compare the structures with those of insects. What are the similarities and differences?
Task #2: Using macrophotography to study and compare the distribution of insect orders in multiple habitats.

Introduction: All of the insects in the world are divided into about 30 different orders based on their evolutionary relationships. However, entomologists believe that most of the insect species in Kentucky belong to just a few of those 30 orders. In this lesson, you will be investigating insect orders, making predictions about which orders are the most common in Kentucky, and using photographs as a way to sample insect order diversity in multiple habitats.

Part 1 – Research. Using the internet and reference books, find lists of insect orders along with the approximate number of species in the world for each order (along with numbers of species in North America if you can find it). From these lists, compile a “top six” list of what you think are the insect orders that have the most species in the world. If you find different numbers of species from different references, take an average. In the “other information” column, cite the place where you found the species numbers. This would also be a good place to list other relevant information. For percent of total species, assume that there are 1,000,000 total world insect species. For instance, you might be able to find the number of species from certain U.S. states. To get you started, we have added Coleoptera, the beetles, as number one: it is generally accepted that the insect order Coleoptera has the most species in the world with about 350,000 known species.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Insect Order</th>
<th>Common Name</th>
<th>World Species / U.S. Species (apx)</th>
<th>Percent of total world insect species</th>
<th>Citations and Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Coleoptera</td>
<td>Beetles</td>
<td>350,000 world / 25,000 U.S.</td>
<td>35%</td>
<td>Number of world estimated from Wikipedia (400,000) and Bugguide.net (390,000). U.S. species estimated from Bugguide.net.</td>
</tr>
</tbody>
</table>

2.

3.

4.

5.

6.
Part 2 – Order Characteristics. What are some basic characteristics of each of the “top six” orders? You can find this information in some of the same places where you found numbers of species.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Insect Order</th>
<th>Life Cycle</th>
<th>Wings</th>
<th>Food & Mouthparts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Coleoptera</td>
<td>Complete</td>
<td>4 wings total, 1<sup>st</sup> pair of wings are a hard shell that folds over to protect the 2<sup>nd</sup> pair, which are used for flight</td>
<td>Many beetles eat plants, many are predators that eat other insects; the larva and the adults often eat the same thing. Adult and larval insects have hard chewing mouthparts.</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part 3 – Pick Habitats to Sample. Pick two habitats (or more if possible) to sample and write them down below... these are places where you will go and take pictures of insects. You will go into each habitat for 1 hour and take as many photos of insects as you can. Try to pick places that that might have a lot of insects. Think of specific places that you will go—either an address, GPS coordinate, or a name. Pick places that are at least five miles from one another. Explain why you think that they are different from one another and why you think they might have a lot of insects. Habitats might include “pond,” “vegetable garden,” “city park,” “forest,” “farm,” etc.
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

Part 1 – Habitat Selection

1. Why do you think that the habitats that you chose might have lots of insects? What are some examples of habitats that might not have many insects, and why?

2. Do you think that the habitats that you picked are very different from one another, or are they all similar? Why might it be good to pick either similar habitats, or very different habitats, or both?

Part 3 – Make Predictions

Based on the information that you gathered above, make some predictions before you go and take photographs.

1. Which 2 insect orders do you think you will take the most pictures of in each habitat? Will they be from the “top six” that you identified above? If not, why not? Did you learn about a different insect order that might be more likely to occur in certain habitats?

<table>
<thead>
<tr>
<th>Habitats Address</th>
<th>Order with the most photos</th>
<th>Order with the 2nd most photos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Why do you think that the habitats that you chose might have lots of insects? What are some examples of habitats that might not have many insects, and why?

2. Do you think that the habitats that you picked are very different from one another, or are they all similar? Why might it be good to pick either similar habitats, or very different habitats, or both?

Part 3 – Make Predictions

Based on the information that you gathered above, make some predictions before you go and take photographs.

1. Which 2 insect orders do you think you will take the most pictures of in each habitat? Will they be from the “top six” that you identified above? If not, why not? Did you learn about a different insect order that might be more likely to occur in certain habitats?

<table>
<thead>
<tr>
<th>Habitats Address</th>
<th>Order with the most photos</th>
<th>Order with the 2nd most photos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Defend Your Predictions: If you think that certain orders will be more common in certain habitats, why? What characteristics do those orders have that might make them more common in certain habitats?

2. When you are done taking all photos in all of your habitats and combine all of the numbers together, what do you think your “top six” will be? Will it be the same as the “top six” in the world that you researched above? If not, why not?

<table>
<thead>
<tr>
<th>Rank</th>
<th>Insect Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
</tbody>
</table>

Defend Your Predictions: If you think that your “top six” will be different from the “world top six,” why? Do you think that there is something unusual about Kentucky or about the habitats that you picked that might lead to a different top six? Is there something about taking photographs that might influence which insects you are able to sample?
Part 4 – Take Photographs. Go to each of the three habitats that you selected. In each location, take as many photographs of insects (using the macrophotography techniques discussed in this guide) as you can in one hour. Try to go on sunny, warm days—this experiment will work the best in late Spring, Summer, or early Fall in Kentucky. What are some other things that you can do—such as choosing times, dates, or weather conditions—to make this a fair experiment at each location? Use the next sheet to write down your data for each location, including the number of each type of insect order that you photographed. In other words, if you took pictures of 5 different beetles during one hour at one of your locations, write down the insect order name “Coleoptera” and the number five. For the “Rank” column, rank the orders based on which ones you took the most photos of, once you’ve counted them all up. Make copies of the next page so that you will have one sheet for each location (you may want to make extra copies in case you find more than fifteen orders at some locations).
MACROPHOTOGRAPHY SURVEY: INSECT ORDERS IN DIFFERENT KENTUCKY HABITATS

Habitat Type and Description:

Date: Time:

GPS Coordinates and/or Address:

<table>
<thead>
<tr>
<th>Insect Order Scientific Name</th>
<th>Insect Order Common Name</th>
<th>Number Photographed</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera</td>
<td>Beetles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

EXAMPLE STATE FAIR EVALUATION SHEET

Lot 6026 Class 687B (UNIT I: Insect Macrophotography)

NAME: COUNTY:
ENTRY NO: YEAR:

IDENTIFICATION OF EXHIBIT:

1. ORDERS

2. SPECIES

3. COMMON NAMES

4. IMAGE NOTATION

5. DIAGNOSTIC QUALITY OF IMAGES

6. AESTHETIC QUALITY OF IMAGES

7. USB STORAGE; FILE AND FOLDER NAMES

8. TOTAL

JUDGE’S COMMENTS:

RIBBON:

(OVER FOR EVALUATION INSTRUCTIONS)
Kentucky 4-H St. Fair Project: Using Digital Macrophotography to Study Entomology in Kentucky
First Year: Diversity (Lot 6026, Class 687B)

EXAMPLE STATE FAIR EVALUATION SHEET – EVALUATION INSTRUCTIONS
Lot 6026 Class 687B (UNIT I: Insect Macrophotography)

1. **ORDERS**
10 points for each insect order represented and correctly identified. Images with misidentified or unidentified orders will not be used to evaluate the final score. Identification and order names will be consistent with UK 4-H Entomology materials.

2. **SPECIES**
2 points for each species represented and correctly identified to order. Opposite sex or distinct form variations of the same species may be used for evaluation if properly notated on “common name” field on the image. (“Stag Beetle, male” and “Stag Beetle, female” for instance)

3. **COMMON NAMES**
1 point for each acceptable common name below the rank or order name. For example, a specimen under Diptera correctly labeled ‘house fly’ will receive 1 point, but if it is only labeled ‘fly’ it would get no points because all Diptera are flies. The common name ‘ant’ under Hymenoptera would receive 1 point—although there are many kinds of ants, Hymenoptera also includes bees, wasps, and sawflies.

4. **IMAGE NOTATION**
100 possible points; average collection 50 points. Note: images must be notated. Images without notations will not be considered in the final score. Considerations:
 - Box is 400x220 pixels, white in color, notation box placed unobtrusively in the image.
 - Text is Ariel, 18pt, black, non-bold, or another easy to read font that fits inside the 400x225 box. Spaces between fields allow for easy reading.
 - Notations include all of the follow information:
 - [4-Her’s Name, County, Lot Number, Class Number]
 - [Date of original photograph]/[Location of original photograph. Location may be in the form of a street/city/zip code address or GPS coordinates.]
 - [Brand and type of camera or camera phone]
 - [Settings, including type of lens, relevant camera settings, and “flash” or “no flash,” any digital enhancements]
 - Does the information provided in the notation field seem to match with the image and its metadata (especially, location, date, type of camera, and settings)?

5. **DIAGNOSTIC QUALITY OF IMAGES**
100 possible points; average collection 50 points. This is an overall score which takes all photos into account. Considerations:
 - Most of the insects are present within the image frames
 - The images are sharp enough for order and common-name identification
 - The insects are oriented properly for order and common-name identification

6. **AESTHETIC QUALITY OF IMAGES**
100 possible points; average collection 50 points. This is an overall score which takes all photos into account. Considerations:
 - Do the backgrounds help to highlight the subjects or do the backgrounds distract from the subjects?
 - Do the images show proper exposure, or are they over- or underexposed?
 - Do the images show shallow or deep focus, and does focusing help to highlight the subjects?
 - Do the images lack sharpness, like they are from low-resolution sources, or over-zoomed?
 - Do the images show excessive digital processing (e.g. sharpening, contrast/brightness adjustment)?

7. **USB STORAGE; FILE AND FOLDER NAMES**
20 possible points. This is an all or nothing score. All elements must be correct to receive points.
 - Is the entry contained on a single USB device formatted for PC, such as a thumb drive?
 - Is the USB device labeled in the format: “4-Her’s last name-County-Lot Number-Class Number.”
 - Is there a single folder in the USB, labeled as above? Are all photos contained in this single folder?
 - Are the images in .jpg format?
 - Are all images exactly 1920x1080?
 - Is each image labeled with a filename that matches the following format: “lastname-county-#.jpg”
Photographic submission guidelines for Class 687B—First Year Photographic Insect Collection:

1. Each photo must be 1920 pixels wide X 1080 pixels tall.
2. Black bars may be used on the side or the top (but not both) if the main image does not exactly conform to the 1920x1080 size.
3. A white notation box (400 pixels wide X 225 pixels tall) must be placed somewhere in the image. Recommended font is 18pt Arial, non-bold, or any font that is easy to read and that fits in the notation box. The box must contain the following information:
 - [Last Name, County, Lot 6026, Class 687B]
 - [Date of original photograph/Location of original photograph (this may be apx address or GPS coordinates)]
 - [Name and brand of camera]
 - [Basic settings on camera; type of external lens used if any; flash or no flash]
 - [Insect Order Name – Acceptable Common Name (common name is optional for first year)]
4. Files must be named “lastname-county-#.jpg” where “#” is an arbitrary number assigned to each file, 1-25 or 1-50
5. Files must be submitted on a USB thumbdrive or similar device with a label attached to it showing “4-Her’s last name-County-Lot Number-Class Number-Entry Number.”