Sf9
Fall armyworm
Sf9
CVCL_0549
M. Summers
Hink, W. F., Thomsen, D. R., Davidson, D. J., Meyer, A. L., & Castellino, F. J. (1991). Expression of three recombinant proteins using baculovirus vectors in 23 insect cell lines. Biotechnology Progress, 7(1), 9-14; Wickham, T. J., Davis, T., Granados, R. R., Shuler, M. L., & Wood, H. A. (1992). SCREENING OF INSECT CELL LINES FOR THE PRODUCTION OF RECOMBINANT PROTEINS AND INFECTIOUS VIRUS IN THE BACULOVIRUS EXPRESSION SYSTEM. Biotechnology progress, 8(5), 391-396; Davis, T. R., Wickham, T. J., McKenna, K. A., Granados, R. R., Shuler, M. L., & Wood, H. A. (1993). COMPARATIVE RECOMBINANT PROTEIN PRODUCTION OF EIGHT INSECT CELL LINES. In Vitro Cellular & Developmental Biology-Animal, 29(5), 388-390; Moos, P. J., Fattaey, H. K., & Johnson, T. C. (1994). CELL PROLIFERATION INHIBITION IN REDUCED GRAVITY. Experimental cell research, 213(2), 458-462; Tremblay, G. B., Sohi, S. S., Retnakaran, A., & MacKenzie, R. E. (1995). NAD‐DEPENDENT METHYLENETETRAHYDROFOLATE DEHYDROGENASE‐METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE IS TARGETED TO THE CYTOPLASM IN INSECT CELL LINES. FEBS letters, 368(1), 177-182; McIntosh, A. H., Grasela, J. J., & Matted, R. L. (1996). IDENTIFICATION OF INSECT CELL LINES BY DNA AMPLIFICATION FINGERPRINTING (DAF). Insect Molecular Biology, 5(3), 187-195; Grasela, J. J., Mcintosh, A. H., Goodman, C. L., Wilson, L. E., & King, L. A. (2000). EXPRESSION OF THE GREEN FLUORESCENT PROTEIN CARRIED BY AUTOGRAPHA CALIFORNICA MULTIPLE NUCLEOPOLYHEDROVIRUS IN INSECT CELL LINES. In Vitro Cellular & Developmental Biology-Animal, 36(3), 205-210; Iwahori, S., Ikeda, M., & Kobayashi, M. (2002). COMPARATIVE CHARACTERIZATION OF PCNA GENES FROM HYPHANTRIA CUNEA NUCLEOPOLYHEDROVIRUS, AND TWO CELL LINES FROM THE FALL ARMYWORM, SPODOPTERA FRUGIPERDA, AND THE FALL WEBWORM, HYPHANTRIA CUNEA. Journal of Insect Biotechnology and Sericology, 71(1), 25-34; Jarman‐Smith, R. F., Armstrong, S. J., Mannix, C. J., & Al‐Rubeai, M. (2002). CHROMOSOME INSTABILITY IN SPODOPTERA FRUGIPERDA SF‐9 CELL LINE. BIOTECHNOLOGY PROGRESS, 18(3), 623-628; Landais, I., Ogliastro, M., Mita, K., Nohata, J., López-Ferber, M., Duonor-Cérutti, M., ... & Devauchelle, G. (2003). ANNOTATION PATTERN OF ESTS FROM SPODOPTERA FRUGIPERDA SF 9 CELLS AND ANALYSIS OF THE RIBOSOMAL PROTEIN GENES REVEAL INSECT-SPECIFIC FEATURES AND UNEXPECTEDLY LOW CODON USAGE BIAS. Bioinformatics, 19(18), 2343-2350; Jarman-Smith, R. F., Mannix, C., & Al-Rubeai, M. (2004). CHARACTERISATION OF TETRAPLOID AND DIPLOID CLONES OF SPODOPTERA FRUGIPERDA CELL LINE. Cytotechnology, 44(1-2), 15-25; Chen, Y. P., Gundersen-Rindal, D. E., & Lynn, D. E. (2005). BACULOVIRUS-BASED EXPRESSION OF AN INSECT VIRAL PROTEIN IN 12 DIFFERENT INSECT CELL LINES. In Vitro Cellular & Developmental Biology-Animal, 41(1-2), 43-49; Alhag, A. K. N., Chao, Y. H., & Xin, P. J. (2007). IDENTIFICATION OF INSECT CELL LINES FROM 8 LEPIDOPTERAN SPECIES BY DNA AMPLIFICATION FINGERPRINTING. J. Appl. Sci, 7, 4040-4043; Wu, C. Y., Lin, H. F., Wang, C. H., & Lo, C. F. (2011). IDENTIFICATION OF INSECT CELL LINES AND CELL‐LINE CROSS‐CONTAMINATIONS BY NUCLEAR RIBOSOMAL ITS SEQUENCES. Journal of Applied Entomology, 135(8), 601-610; Karger, A., Bettin, B., Lenk, M., & Mettenleiter, T. C. (2010). RAPID CHARACTERISATION OF CELL CULTURES BY MATRIX-ASSISTED LASER DESORPTION/IONISATION MASS SPECTROMETRIC TYPING. Journal of virological methods, 164(1-2), 116-121; Krammer, F., Schinko, T., Palmberger, D., Tauer, C., Messner, P., & Grabherr, R. (2010). TRICHOPLUSIA NI CELLS (HIGH FIVE TM) ARE HIGHLY EFFICIENT FOR THE PRODUCTION OF INFLUENZA A VIRUS-LIKE PARTICLES: A COMPARISON OF TWO INSECT CELL LINES AS PRODUCTION PLATFORMS FOR INFLUENZA VACCINES. Molecular biotechnology, 45(3), 226-234; Wu, Y. L., Jiang, L., Hashimoto, Y., Granados, R. R., & Li, G. X. (2011). ESTABLISHMENT, GROWTH KINETICS, AND SUSCEPTIBILITY TO ACMNPV OF HEAT TOLERANT LEPIDOPTERAN CELL LINES. Virologica Sinica, 26(3), 198-205; Curtis, T. M., Collins, A. M., Gerlach, B. D., Brennan, L. M., Widder, M. W., Van der Schalie, W. H., ... & Bols, N. C. (2013). SUITABILITY OF INVERTEBRATE AND VERTEBRATE CELLS IN A PORTABLE IMPEDANCE-BASED TOXICITY SENSOR: TEMPERATURE MEDIATED IMPACTS ON LONG-TERM SURVIVAL. Toxicology in Vitro, 27(7), 2061-2066; Wilde, M., Klausberger, M., Palmberger, D., Ernst, W., & Grabherr, R. (2014). TNAO38, HIGH FIVE AND SF9—EVALUATION OF HOST–VIRUS INTERACTIONS IN THREE DIFFERENT INSECT CELL LINES: BACULOVIRUS PRODUCTION AND RECOMBINANT PROTEIN EXPRESSION. Biotechnology letters, 36(4), 743-749; Ma, H., Galvin, T. A., Glasner, D. R., Shaheduzzaman, S., & Khan, A. S. (2014). IDENTIFICATION OF A NOVEL RHABDOVIRUS IN SPODOPTERA FRUGIPERDA CELL LINES. Journal of virology, 88(12), 6576-6585; Hashimoto, Y., Macri, D., Srivastava, I., McPherson, C., Felberbaum, R., Post, P., & Cox, M. (2017). COMPLETE STUDY DEMONSTRATING THE ABSENCE OF RHABDOVIRUS IN A DISTINCT SF9 CELL LINE. Plos one, 12(4), e0175633; Nandakumar, S., Ma, H., & Khan, A. S. (2017). WHOLE-GENOME SEQUENCE OF THE SPODOPTERA FRUGIPERDA SF9 INSECT CELL LINE. Genome announcements, 5(34); Shu, B., Zhang, J., Sethuraman, V., Cui, G., Yi, X., & Zhong, G. (2017). TRANSCRIPTOME ANALYSIS OF SPODOPTERA FRUGIPERDA SF9 CELLS REVEALS PUTATIVE APOPTOSIS-RELATED GENES AND A PRELIMINARY APOPTOSIS MECHANISM INDUCED BY AZADIRACHTIN. Scientific reports, 7(1), 1-13; Geisler, C., & Jarvis, D. L. (2018). ADVENTITIOUS VIRUSES IN INSECT CELL LINES USED FOR RECOMBINANT PROTEIN EXPRESSION. Protein expression and purification, 144, 25-32.
Description: this is a clonal line of IPLB-SF21AE; Growth characteristics: population doubling time is 27 hours; Karyology: Cell line are mostly heterogenous and contains a mixture of diploid and tetraploid cells; Unique characteristics: this line is heavily used to produce recombinant proteins using baculovirus expression vectors.
EX-CELL 420 or TC-100 + 10% FBS or a variety of serum-free media from different vendors
American Type Culture Collection (ATCC); IIBBL-Invasive Insect Biocontrol & Behavior Laboratory USDA, ARS, Beltsville, Maryland, USA.
Jacob.Corcoran@usda.gov
High producer of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and susceptible to infection by Plutella xylostella multiple nucleopolyhedrovirus (PxMNPV), Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), Spodoptera littoralis multiple nucleopolyhedrovirus (SpliNPV), and Thysanoplusia orichalcea multiple nucleopolyhedrovirus (ThorMNPV)
Rhabdovirus
There are many patents that cite this cell line. Please perform another search and include some here
© 2024 University of Kentucky, Martin-Gatton College of Agriculture, Food and Environment